Top MCPs by Category

Discover the most popular MCP servers in each category, ranked by community engagement and views.

MCP

10 MCPs
View All →

Playwright MCP

Playwright MCP server. A Model Context Protocol (MCP) server that provides browser automation capabilities using Playwright. This server enables large language models (LLMs) to interact with web pages through structured accessibility snapshots, bypassing the need for screenshots or visually-tuned models. The server is designed to be fast, lightweight, and deterministic, offering LLM-friendly tooling and a rich set of browser automation capabilities via MCP tools. It supports standalone operation, containerized deployments, and integration with a variety of MCP clients (Claude Desktop, VS Code, Copilot, Cursor, Goose, Windsurf, and others).

Sequential Thinking MCP Server

Sequential Thinking MCP Server provides a dedicated MCP tool that guides problem-solving through a structured, step-by-step thinking process. It supports dynamic adjustment of the number of thoughts and allows revision and branching within a controlled workflow, making it ideal for complex analysis and solution hypothesis development. This server is designed to register a single tool, sequential_thinking, and is integrated with common MCP deployment methods (NPX, Docker) as well as editor integrations like Claude Desktop and VS Code for quick setup. The documentation provides exact configuration snippets, usage patterns, and building instructions to help you deploy and use the MCP server effectively, including Codex CLI, NPX, and Docker installation examples.

N8N MCP Server

An MCP (Model Context Protocol) server designed to integrate Claude Desktop, Claude Code, Windsurf, and Cursor with n8n workflows. This MCP enables users to build, test, and orchestrate complex workflows by exposing a set of tools that bridge Claude’s capabilities with n8n’s automation platform. The project emphasizes robust trigger handling, multi-tenant readiness, and progressive documentation to help developers understand how tools map to real-world workflow tasks. It also outlines future tooling integration points (such as getNodeEssentials and getNodeInfo) to further enhance node-structure awareness within MCP-powered automations.

#4

MarkItDown MCP

MarkItDown-MCP is a lightweight MCP (Model Context Protocol) server provided as the markitdown-mcp package. It exposes a STDIO, Streamable HTTP, and SSE MCP server designed for calling MarkItDown to convert content to Markdown. The package focuses on simplicity and accessibility, enabling you to run the MCP server locally via a simple CLI, or in Docker for containerized workflows, with integration options for Claude Desktop. The core capability is exposed through a single tool, convert_to_markdown(uri), which accepts a URI in http:, https:, file:, or data: schemes to fetch content and convert it to Markdown. This MCP server is easy to install with pip and can be used in various transport modes, including STDIO and HTTP/SSE, making it a flexible choice for automations and integrations.

#5

Chrome MCP Server

Chrome MCP Server is a Chrome extension-based Model Context Protocol (MCP) server that exposes your Chrome browser functionality to AI assistants like Claude, enabling complex browser automation, content analysis, and semantic search. It leverages your existing Chrome environment, including login states and configurations, to allow large language models and chatbots to control the browser natively without needing to launch a separate automation process. The project emphasizes privacy by remaining fully local and offers capabilities such as cross-tab context, streamable HTTP communication, and a built-in vector database for semantic search and content analysis. As an early-stage project, it includes a growing set of tools for browser control, inspection, and automation, with ongoing development to broaden compatibility and features.

mcp

9 MCPs
View All →

Hugging Face MCP Server

Hugging Face Official MCP Server connects your large language models (LLMs) to the Hugging Face Hub and thousands of Gradio AI Applications, enabling seamless MCP (Model Context Protocol) integration across multiple transports. It supports STDIO, SSE (to be deprecated but still commonly deployed), StreamableHTTP, and StreamableHTTPJson, with the Web Application allowing dynamic tool management and status updates. This MCP server is designed to be run locally or in Docker, and it provides integrations with Claude Desktop, Claude Code, Gemini CLI (and its extension), VSCode, and Cursor, making it easy to configure and manage MCP-enabled tools and endpoints. Tools such as hf_doc_search and hf_doc_fetch can be enabled to enhance document discovery, and an optional Authenticate tool can be included to handle OAuth challenges when called.

Shadcn UI MCP Server v4

Shadcn UI v4 MCP Server is an advanced MCP (Model Context Protocol) server designed to give AI assistants comprehensive access to shadcn/ui v4 components, blocks, demos, and metadata. It enables multi-framework support (React, Svelte, Vue, and React Native) with fast, cache-friendly access to component source code, demos, and directory structures, empowering AI-driven development workflows. The project emphasizes production-readiness with Docker Compose, SSE transport for multi-client deployments, and smart caching to optimize GitHub API usage while providing rich metadata and usage patterns for rapid prototyping and learning across frameworks.

Figma MCP server

The Figma MCP server enables design context delivery from Figma files to AI agents and code editors, empowering teams to generate code directly from design selections. It supports both a remote hosted server and a locally hosted desktop server, allowing seamless integration with popular editors through Code Connect and a suite of tools that extract design context, metadata, variables, and more. This guide covers enabling the MCP server, configuring clients (VS Code, Cursor, Claude Code, and others), and using a curated set of MCP tools to fetch structured design data for faster, more accurate code generation. It also explains best practices, prompts, and integration workflows that help teams align generated output with their design systems. The documentation includes concrete JSON examples for configuring servers in editors like VS Code and Cursor, as well as command examples for Claude Code integration and plugin installation.

#4

Appwrite MCP server

Appwrite MCP server is a Model Context Protocol server that enables AI models to interact with Appwrite’s backend. It provides a curated set of MCP tools to manage databases, users, functions, teams, and more within your Appwrite project, enabling powerful AI-assisted workflows and natural-language interactions with your backend. The server ships with the Databases tools enabled by default to keep prompts within context limits and can be extended by enabling additional APIs via command-line flags. This makes it easier to build AI-powered applications that leverage Appwrite APIs securely and efficiently.

#5

MCP Access Point

MCP Access Point is a lightweight gateway that turns existing HTTP services into MCP (Model Context Protocol) endpoints with zero code changes. Built on high-performance Pingora proxy, it enables seamless protocol conversion between HTTP and MCP, supporting both SSE and Streamable HTTP. Designed for multi-tenant deployments, it offers a RESTful Admin API for real-time configuration management, dynamic updates, and resource administration without restarting the service. This repository provides a clear Quick Start, multi-tenancy guidance, and admin operations to manage upstreams, services, routes, and more, making it easy to expose legacy HTTP APIs to MCP clients like Cursor Desktop and MCP Inspectors.

integration

7 MCPs
View All →

Playwright MCP

Playwright MCP server. A Model Context Protocol (MCP) server that provides browser automation capabilities using Playwright. This server enables large language models (LLMs) to interact with web pages through structured accessibility snapshots, bypassing the need for screenshots or visually-tuned models. The server is designed to be fast, lightweight, and deterministic, offering LLM-friendly tooling and a rich set of browser automation capabilities via MCP tools. It supports standalone operation, containerized deployments, and integration with a variety of MCP clients (Claude Desktop, VS Code, Copilot, Cursor, Goose, Windsurf, and others).

N8N MCP Server

An MCP (Model Context Protocol) server designed to integrate Claude Desktop, Claude Code, Windsurf, and Cursor with n8n workflows. This MCP enables users to build, test, and orchestrate complex workflows by exposing a set of tools that bridge Claude’s capabilities with n8n’s automation platform. The project emphasizes robust trigger handling, multi-tenant readiness, and progressive documentation to help developers understand how tools map to real-world workflow tasks. It also outlines future tooling integration points (such as getNodeEssentials and getNodeInfo) to further enhance node-structure awareness within MCP-powered automations.

Hugging Face MCP Server

Hugging Face Official MCP Server connects your large language models (LLMs) to the Hugging Face Hub and thousands of Gradio AI Applications, enabling seamless MCP (Model Context Protocol) integration across multiple transports. It supports STDIO, SSE (to be deprecated but still commonly deployed), StreamableHTTP, and StreamableHTTPJson, with the Web Application allowing dynamic tool management and status updates. This MCP server is designed to be run locally or in Docker, and it provides integrations with Claude Desktop, Claude Code, Gemini CLI (and its extension), VSCode, and Cursor, making it easy to configure and manage MCP-enabled tools and endpoints. Tools such as hf_doc_search and hf_doc_fetch can be enabled to enhance document discovery, and an optional Authenticate tool can be included to handle OAuth challenges when called.

#4

MCP server for Appwrite docs

The MCP server for Appwrite docs enables LLMs and code-generation tools to interact with comprehensive Appwrite documentation. It empowers AI assistants to access up-to-date API references, SDK guides, and implementation examples, facilitating intelligent code generation, troubleshooting, and best-practice guidance directly from the official docs. This MCP brings real-time context, semantic search, and seamless integration with popular editors and IDEs to accelerate development workflows around Appwrite's APIs and SDKs.

#5

Appwrite MCP server

Appwrite MCP server is a Model Context Protocol server that enables AI models to interact with Appwrite’s backend. It provides a curated set of MCP tools to manage databases, users, functions, teams, and more within your Appwrite project, enabling powerful AI-assisted workflows and natural-language interactions with your backend. The server ships with the Databases tools enabled by default to keep prompts within context limits and can be extended by enabling additional APIs via command-line flags. This makes it easier to build AI-powered applications that leverage Appwrite APIs securely and efficiently.

server

6 MCPs
View All →

Sequential Thinking MCP Server

Sequential Thinking MCP Server provides a dedicated MCP tool that guides problem-solving through a structured, step-by-step thinking process. It supports dynamic adjustment of the number of thoughts and allows revision and branching within a controlled workflow, making it ideal for complex analysis and solution hypothesis development. This server is designed to register a single tool, sequential_thinking, and is integrated with common MCP deployment methods (NPX, Docker) as well as editor integrations like Claude Desktop and VS Code for quick setup. The documentation provides exact configuration snippets, usage patterns, and building instructions to help you deploy and use the MCP server effectively, including Codex CLI, NPX, and Docker installation examples.

Hugging Face MCP Server

Hugging Face Official MCP Server connects your large language models (LLMs) to the Hugging Face Hub and thousands of Gradio AI Applications, enabling seamless MCP (Model Context Protocol) integration across multiple transports. It supports STDIO, SSE (to be deprecated but still commonly deployed), StreamableHTTP, and StreamableHTTPJson, with the Web Application allowing dynamic tool management and status updates. This MCP server is designed to be run locally or in Docker, and it provides integrations with Claude Desktop, Claude Code, Gemini CLI (and its extension), VSCode, and Cursor, making it easy to configure and manage MCP-enabled tools and endpoints. Tools such as hf_doc_search and hf_doc_fetch can be enabled to enhance document discovery, and an optional Authenticate tool can be included to handle OAuth challenges when called.

Figma MCP server

The Figma MCP server enables design context delivery from Figma files to AI agents and code editors, empowering teams to generate code directly from design selections. It supports both a remote hosted server and a locally hosted desktop server, allowing seamless integration with popular editors through Code Connect and a suite of tools that extract design context, metadata, variables, and more. This guide covers enabling the MCP server, configuring clients (VS Code, Cursor, Claude Code, and others), and using a curated set of MCP tools to fetch structured design data for faster, more accurate code generation. It also explains best practices, prompts, and integration workflows that help teams align generated output with their design systems. The documentation includes concrete JSON examples for configuring servers in editors like VS Code and Cursor, as well as command examples for Claude Code integration and plugin installation.

#4

Github MCP Server

GitHub's official MCP Server. This repository hosts the MCP server implementation that enables Model Context Protocol (MCP) tooling for GitHub data and workflows. It exposes a wide registry of MCP tools spanning code management, repository operations, issues, pull requests, workflows, gists, and more. The documentation and commit history reveal a broad set of tools (GetMe, GetTeams, ListIssues, CreateOrUpdateFile, GetRepositoryTree, and many others) that are designed to be wired into dynamic toolsets and accessed via a consistent ServerTool pattern. This MCP server is built with extensibility in mind, supporting features like tool dependencies, dynamic toolsets, and feature flags to adapt to varied prompts and use cases. The project emphasizes a registry-driven approach where tools, resources, and prompts are defined and validated, enabling robust integration with client apps and AI models.

#5

Imagen3-MCP

Imagen3-MCP is an image generation service based on Google's Imagen 3.0 that exposes its functionality through MCP (Model Control Protocol). The project provides a server to run a local MCP service that accesses Google Gemini-powered image generation, enabling developers to integrate advanced image synthesis into their applications. The documentation covers prerequisites (Gemini API key), installation steps for Cherry Studio, and a Cursor-based JSON configuration example for embedding the MCP server in broader tooling. This MCP is designed to be deployment-friendly, with configurable environment variables and optional proxy settings to adapt to various network environments.

tools

4 MCPs
View All →

Playwright MCP

Playwright MCP server. A Model Context Protocol (MCP) server that provides browser automation capabilities using Playwright. This server enables large language models (LLMs) to interact with web pages through structured accessibility snapshots, bypassing the need for screenshots or visually-tuned models. The server is designed to be fast, lightweight, and deterministic, offering LLM-friendly tooling and a rich set of browser automation capabilities via MCP tools. It supports standalone operation, containerized deployments, and integration with a variety of MCP clients (Claude Desktop, VS Code, Copilot, Cursor, Goose, Windsurf, and others).

Hugging Face MCP Server

Hugging Face Official MCP Server connects your large language models (LLMs) to the Hugging Face Hub and thousands of Gradio AI Applications, enabling seamless MCP (Model Context Protocol) integration across multiple transports. It supports STDIO, SSE (to be deprecated but still commonly deployed), StreamableHTTP, and StreamableHTTPJson, with the Web Application allowing dynamic tool management and status updates. This MCP server is designed to be run locally or in Docker, and it provides integrations with Claude Desktop, Claude Code, Gemini CLI (and its extension), VSCode, and Cursor, making it easy to configure and manage MCP-enabled tools and endpoints. Tools such as hf_doc_search and hf_doc_fetch can be enabled to enhance document discovery, and an optional Authenticate tool can be included to handle OAuth challenges when called.

plugged.in MCP Hub — Proxy · Knowledge · Memory · Tools

The plugged.in MCP Proxy Server operates as a central hub that aggregates multiple Model Context Protocol (MCP) servers into a single, unified interface. It orchestrates knowledge, memory, and tools across connected MCPs, enabling clients to query documents, manage memory, and invoke tools from various servers through one connection. With support for STDIO, Server-Sent Events (SSE), and Streamable HTTP transports, it enables seamless integration with popular MCP clients like Claude Desktop, Cline, and Cursor while providing policy, telemetry, and registry features for scalable deployments. This proxy fetches tool, prompt, and resource configurations from the plugged.in App APIs and exposes a unified catalog of capabilities. It supports static built-in tools, memory clipboard operations, and dynamic tools discovered from connected MCP servers, including tool discovery, RAG-based search, document management, and notifications. The hub also offers configuration options for HTTP transport, authentication, and session management, making it possible to run as a stateless HTTP service or a stateful STDIO proxy, with optional API-key protection for HTTP endpoints.

#4

openai-gpt-image-mcp

A Model Context Protocol (MCP) tool server designed for OpenAI's GPT-4o and gpt-image-1 image generation and editing APIs. This MCP server exposes image-generation capabilities via two primary tools, create-image and edit-image, enabling developers to generate images from prompts and perform inpainting, outpainting, or compositing edits with fine-grained prompt control. It also provides file-output options so generated content can be saved to disk or returned as base64, and it supports a range of MCP-compatible clients, including Claude Desktop, Cursor, VSCode, Windsurf, among others. Built on the MCP SDK and OpenAI and OpenAI-compatible tooling, this server offers a ready-to-run solution for integrating image APIs into MCP-enabled workflows.

AI

4 MCPs
View All →

MindsDB MCP server

MindsDB ships with a built-in MCP (Model Context Protocol) server that enables MCP applications to connect, unify and respond to questions over large-scale federated data. It spans databases, data warehouses, and SaaS applications, allowing you to query across diverse sources in a unified manner. The MCP server is integrated into MindsDB's architecture with the Connect-Unify-Respond philosophy, and you can learn more about MCP at docs.mindsdb.com/mcp/overview. You can install MindsDB Server via Docker Desktop or Docker, and the MCP server is part of the standard MindsDB deployment.

mcpmcp-server

mcpmcp-server is a focused solution for discovering, setting up, and integrating MCP servers with your favorite clients to unlock AI-powered workflows. It streamlines how you connect MCP-powered servers to popular clients, enabling seamless AI-assisted interactions across your daily tools. The project emphasizes an approachable, config-driven approach to linking MCP servers with clients like Claude Desktop, while directing you to the homepage for variations across apps and platforms. This README highlights a practical JSON configuration example and notes on supported environments, helping you get started quickly and confidently.

1MCP Agent

A unified Model Context Protocol server implementation that aggregates multiple MCP servers into one. The 1mcp-app/agent is an open-source project that provides a single entry point for multiple MCP servers, making it easier to manage and interact with various AI models and tools.

#4

Anki MCP Server

A Model Context Protocol (MCP) server that enables AI assistants to interact with Anki, the spaced repetition flashcard application. The Anki MCP Server allows AI models to access Anki's card data, enabling features like automated flashcard creation, review, and management.

docker

3 MCPs
View All →

Shadcn UI MCP Server v4

Shadcn UI v4 MCP Server is an advanced MCP (Model Context Protocol) server designed to give AI assistants comprehensive access to shadcn/ui v4 components, blocks, demos, and metadata. It enables multi-framework support (React, Svelte, Vue, and React Native) with fast, cache-friendly access to component source code, demos, and directory structures, empowering AI-driven development workflows. The project emphasizes production-readiness with Docker Compose, SSE transport for multi-client deployments, and smart caching to optimize GitHub API usage while providing rich metadata and usage patterns for rapid prototyping and learning across frameworks.

Magg: The MCP Aggregator

Magg is an MCP Aggregator – a meta-MCP server that manages, aggregates, and proxies multiple MCP servers. It acts as a central hub for discovering, configuring, and orchestrating MCP servers, allowing large language models to extend their capabilities at runtime. Magg exposes a suite of tools to search, add, configure, enable/disable, and proxy MCP servers and their tools, merging them under unified prefixes and persisting configurations across sessions. It also includes built-in health and status tools, Real-time Notifications, and MBro (MCP Browser) for interactive exploration, making it easier to compose, manage, and monitor complex MCP ecosystems. Whether you’re running stdio, HTTP, or hybrid transports, Magg provides flexible deployment modes, kit management, and secure access with optional JWT-based authentication.

MetaMCP

MetaMCP is a MCP proxy that lets you dynamically aggregate MCP servers into a unified MCP server, and apply middlewares. MetaMCP itself is a MCP server so it can be easily plugged into ANY MCP clients. It functions as an MCP Aggregator, Orchestrator, Middleware, and Gateway all in one docker image, enabling scalable, configurable hosting of multiple MCP servers behind a single endpoint with flexible authentication, tooling, and annotations. This README introduces core concepts such as MCP Server configurations, Namespaces, Endpoints, Middleware, Inspector, and Tool Overrides & Annotations, and provides quick-start guidance for running MetaMCP with Docker, building a development environment, and integrating with clients like Claude Desktop via proxies. It also covers MCP protocol compatibility, authentication options (including API keys, OAuth, and OIDC), and integration guidance for developers looking to remix MCP tool flows and middleware pipelines.

SSE

3 MCPs
View All →

MarkItDown MCP

MarkItDown-MCP is a lightweight MCP (Model Context Protocol) server provided as the markitdown-mcp package. It exposes a STDIO, Streamable HTTP, and SSE MCP server designed for calling MarkItDown to convert content to Markdown. The package focuses on simplicity and accessibility, enabling you to run the MCP server locally via a simple CLI, or in Docker for containerized workflows, with integration options for Claude Desktop. The core capability is exposed through a single tool, convert_to_markdown(uri), which accepts a URI in http:, https:, file:, or data: schemes to fetch content and convert it to Markdown. This MCP server is easy to install with pip and can be used in various transport modes, including STDIO and HTTP/SSE, making it a flexible choice for automations and integrations.

plugged.in MCP Hub — Proxy · Knowledge · Memory · Tools

The plugged.in MCP Proxy Server operates as a central hub that aggregates multiple Model Context Protocol (MCP) servers into a single, unified interface. It orchestrates knowledge, memory, and tools across connected MCPs, enabling clients to query documents, manage memory, and invoke tools from various servers through one connection. With support for STDIO, Server-Sent Events (SSE), and Streamable HTTP transports, it enables seamless integration with popular MCP clients like Claude Desktop, Cline, and Cursor while providing policy, telemetry, and registry features for scalable deployments. This proxy fetches tool, prompt, and resource configurations from the plugged.in App APIs and exposes a unified catalog of capabilities. It supports static built-in tools, memory clipboard operations, and dynamic tools discovered from connected MCP servers, including tool discovery, RAG-based search, document management, and notifications. The hub also offers configuration options for HTTP transport, authentication, and session management, making it possible to run as a stateless HTTP service or a stateful STDIO proxy, with optional API-key protection for HTTP endpoints.

Pipedream MCP Server

Pipedream MCP Server is a reference implementation for self-hosting a Model Context Protocol (MCP) server. It showcases how to manage and serve MCP-based apps and tools in your own environment, providing you with a way to run MCP servers locally or within your organization. Note that this MCP server is a reference implementation and is no longer actively maintained; for production workloads, Pipedream recommends using the remote MCP server, which offers hosted reliability and scaling. The server supports two primary modes and integrates with Pipedream Connect for authentication and API management, enabling automatic app discovery and credential storage with enterprise-grade security.

Docker

3 MCPs
View All →

MarkItDown MCP

MarkItDown-MCP is a lightweight MCP (Model Context Protocol) server provided as the markitdown-mcp package. It exposes a STDIO, Streamable HTTP, and SSE MCP server designed for calling MarkItDown to convert content to Markdown. The package focuses on simplicity and accessibility, enabling you to run the MCP server locally via a simple CLI, or in Docker for containerized workflows, with integration options for Claude Desktop. The core capability is exposed through a single tool, convert_to_markdown(uri), which accepts a URI in http:, https:, file:, or data: schemes to fetch content and convert it to Markdown. This MCP server is easy to install with pip and can be used in various transport modes, including STDIO and HTTP/SSE, making it a flexible choice for automations and integrations.

IO Aerospace MCP Server

IO Aerospace MCP Server is a production-ready Model Context Protocol (MCP) server designed for aerospace and astrodynamics calculations. It exposes a rich set of tools for celestial body ephemeris, orbital mechanics, DSN ground station operations, solar system object properties, and comprehensive unit and time system conversions. Built on the IO Aerospace Astrodynamics framework, this server delivers core algorithms for ephemerides, geometry, and time systems, enabling developers to integrate advanced aerospace calculations into local or hosted deployments. The project supports both modern streamable-HTTP transport and legacy SSE/STDIO configurations, with self-hosting options via Docker or native .NET deployments for flexible integration into existing ecosystems.

MCP Server Templates (Legacy)

MCP Server Templates (Legacy) is a flexible platform that provides Docker and Kubernetes backends, a lightweight CLI (mcpt), and client utilities for seamless MCP integration. It enables you to spin up servers from templates, route requests through a single endpoint with load balancing, and support both deployed (HTTP) and local (stdio) transports — all with sensible defaults and YAML-based configs. This legacy variant lays the groundwork for MCP integrations, while offering a clear upgrade path to the newer MCP Platform. The project emphasizes migration guidance to keep existing configurations working as you move to enhanced architecture and capabilities.

CLI

3 MCPs
View All →

MarkItDown MCP

MarkItDown-MCP is a lightweight MCP (Model Context Protocol) server provided as the markitdown-mcp package. It exposes a STDIO, Streamable HTTP, and SSE MCP server designed for calling MarkItDown to convert content to Markdown. The package focuses on simplicity and accessibility, enabling you to run the MCP server locally via a simple CLI, or in Docker for containerized workflows, with integration options for Claude Desktop. The core capability is exposed through a single tool, convert_to_markdown(uri), which accepts a URI in http:, https:, file:, or data: schemes to fetch content and convert it to Markdown. This MCP server is easy to install with pip and can be used in various transport modes, including STDIO and HTTP/SSE, making it a flexible choice for automations and integrations.

PersonalizationMCP

PersonalizationMCP is a unified personal data hub built on MCP (Model Context Protocol) that enables AI assistants to access and reason over data from Steam, YouTube, Bilibili, Spotify, Reddit, and more. This repository showcases a Python-based MCP server that aggregates platform APIs, manages OAuth2 tokens, and exposes a rich set of tools to query user data, playlists, watch history, and social actions. It emphasizes local data handling, token management automation, and a modular architecture that makes it easy to add new platforms through the @mcp.tool() decorator and server integration. Ideal for developers building context-aware assistants who want a single, extensible backend to surface personal data across multiple services. The MCP server is designed to run locally on your machine with secure configuration, offering multiple installation paths (conda, uv, or pip with virtualenv). It includes a comprehensive set of available tools organized by platform, robust token management (notably YouTube), and practical guidance for configuration, testing, and cursor-based integration with consumer apps like Cursor. The project also provides detailed setup steps for each platform, including how to obtain API keys, cookies, and OAuth credentials, ensuring a smooth path from zero to a functioning personal data hub.

NCP - Natural Context Provider (NCP)

NCP is a unified MCP platform that consolidates 50+ tools, skills, and Photons into a single, intelligent interface. It enables code-mode execution, on-demand loading, scheduling, and semantic tool discovery, dramatically reducing token usage and latency while enabling AI assistants to work with external MCPs, skills, and Photons. This documentation covers how NCP works, the available MCPs and tools, installation and integration steps for popular clients (Claude Desktop, VS Code, and more), and practical examples that demonstrate how to find, run, and compose tools across MCPs. Whether you’re building with internal MCPs or exploring external tools, NCP provides a scalable, vendor-agnostic foundation for AI-powered automation and tool orchestration.

registry

3 MCPs
View All →

Github MCP Server

GitHub's official MCP Server. This repository hosts the MCP server implementation that enables Model Context Protocol (MCP) tooling for GitHub data and workflows. It exposes a wide registry of MCP tools spanning code management, repository operations, issues, pull requests, workflows, gists, and more. The documentation and commit history reveal a broad set of tools (GetMe, GetTeams, ListIssues, CreateOrUpdateFile, GetRepositoryTree, and many others) that are designed to be wired into dynamic toolsets and accessed via a consistent ServerTool pattern. This MCP server is built with extensibility in mind, supporting features like tool dependencies, dynamic toolsets, and feature flags to adapt to varied prompts and use cases. The project emphasizes a registry-driven approach where tools, resources, and prompts are defined and validated, enabling robust integration with client apps and AI models.

OpenMCP

OpenMCP is a dual-purpose framework: a standard for converting web APIs into MCP servers and an open-source registry of servers that follow that standard. Each OpenMCP server exposes a token-efficient MCP interface that enables MCP clients to make requests to a target web API on behalf of users. Together, the servers in the registry enable client LLMs to fetch data and perform actions across a broad set of domains, providing a scalable, interoperable way to integrate external services with MCP clients. The documentation guides you through creating a server, adding it to MCP clients, and converting various web API formats into OpenMCP-compatible servers, covering REST, gRPC, JSON-RPC, GraphQL, SOAP, and PostgREST variants.

MCPJungle

MCPJungle is a self-hosted MCP Gateway and Registry for AI agents. It serves as a central registry and gateway to manage Model Context Protocol (MCP) servers and the tools they expose. By consolidating MCP server registration, tool discovery, and access control, MCPJungle enables AI agents and clients to discover, group, and securely invoke tools from a single, unified gateway. The project provides a CLI, Docker-based deployment options, and enterprise-ready features such as tool grouping, access control, and observability to streamline MCP-based workflows across organizations.

Model Context Protocol

3 MCPs
View All →

IO Aerospace MCP Server

IO Aerospace MCP Server is a production-ready Model Context Protocol (MCP) server designed for aerospace and astrodynamics calculations. It exposes a rich set of tools for celestial body ephemeris, orbital mechanics, DSN ground station operations, solar system object properties, and comprehensive unit and time system conversions. Built on the IO Aerospace Astrodynamics framework, this server delivers core algorithms for ephemerides, geometry, and time systems, enabling developers to integrate advanced aerospace calculations into local or hosted deployments. The project supports both modern streamable-HTTP transport and legacy SSE/STDIO configurations, with self-hosting options via Docker or native .NET deployments for flexible integration into existing ecosystems.

MindsDB MCP server

MindsDB ships with a built-in MCP (Model Context Protocol) server that enables MCP applications to connect, unify and respond to questions over large-scale federated data. It spans databases, data warehouses, and SaaS applications, allowing you to query across diverse sources in a unified manner. The MCP server is integrated into MindsDB's architecture with the Connect-Unify-Respond philosophy, and you can learn more about MCP at docs.mindsdb.com/mcp/overview. You can install MindsDB Server via Docker Desktop or Docker, and the MCP server is part of the standard MindsDB deployment.

1MCP Agent

A unified Model Context Protocol server implementation that aggregates multiple MCP servers into one. The 1mcp-app/agent is an open-source project that provides a single entry point for multiple MCP servers, making it easier to manage and interact with various AI models and tools.

Cursor

3 MCPs
View All →

PersonalizationMCP

PersonalizationMCP is a unified personal data hub built on MCP (Model Context Protocol) that enables AI assistants to access and reason over data from Steam, YouTube, Bilibili, Spotify, Reddit, and more. This repository showcases a Python-based MCP server that aggregates platform APIs, manages OAuth2 tokens, and exposes a rich set of tools to query user data, playlists, watch history, and social actions. It emphasizes local data handling, token management automation, and a modular architecture that makes it easy to add new platforms through the @mcp.tool() decorator and server integration. Ideal for developers building context-aware assistants who want a single, extensible backend to surface personal data across multiple services. The MCP server is designed to run locally on your machine with secure configuration, offering multiple installation paths (conda, uv, or pip with virtualenv). It includes a comprehensive set of available tools organized by platform, robust token management (notably YouTube), and practical guidance for configuration, testing, and cursor-based integration with consumer apps like Cursor. The project also provides detailed setup steps for each platform, including how to obtain API keys, cookies, and OAuth credentials, ensuring a smooth path from zero to a functioning personal data hub.

Claude Skills MCP Server

Claude Skills MCP Server is an MCP server that enables intelligent search and retrieval of Claude Agent Skills using vector embeddings and semantic similarity. It implements a progressive disclosure architecture so AI applications can discover and load skills in stages (metadata → full content → files) while remaining fast and local. The server can load skills from multiple sources, including Official Anthropic Skills, K-Dense AI Scientific Skills, and local directories, providing a zero-configuration experience out of the box for Cursor or standalone usage. The architecture is split into a lightweight frontend and a heavy backend, enabling instant startup and background backend download, with no API keys required and the ability to connect to remote hosted backends if desired.

Roundtable AI MCP Server

Roundtable AI MCP Server is a zero-configuration local MCP server that unifies multiple AI coding assistants (Codex, Claude Code, Cursor, Gemini) through intelligent auto-discovery and a standardized interface. It coordinates specialized sub-agents from within your IDE to solve engineering problems in parallel, sharing context and synthesizing responses into a single, high-quality output. This documentation details installation, available MCP tools, integration with popular IDEs, and a broad ecosystem of specialized tools and CLIs that can be invoked as part of a roundtable-powered workflow, enabling developers to delegate tasks to the right AI for each facet of a problem without leaving their development environment.

gateway

3 MCPs
View All →

MCP Access Point

MCP Access Point is a lightweight gateway that turns existing HTTP services into MCP (Model Context Protocol) endpoints with zero code changes. Built on high-performance Pingora proxy, it enables seamless protocol conversion between HTTP and MCP, supporting both SSE and Streamable HTTP. Designed for multi-tenant deployments, it offers a RESTful Admin API for real-time configuration management, dynamic updates, and resource administration without restarting the service. This repository provides a clear Quick Start, multi-tenancy guidance, and admin operations to manage upstreams, services, routes, and more, making it easy to expose legacy HTTP APIs to MCP clients like Cursor Desktop and MCP Inspectors.

MetaMCP

MetaMCP is a MCP proxy that lets you dynamically aggregate MCP servers into a unified MCP server, and apply middlewares. MetaMCP itself is a MCP server so it can be easily plugged into ANY MCP clients. It functions as an MCP Aggregator, Orchestrator, Middleware, and Gateway all in one docker image, enabling scalable, configurable hosting of multiple MCP servers behind a single endpoint with flexible authentication, tooling, and annotations. This README introduces core concepts such as MCP Server configurations, Namespaces, Endpoints, Middleware, Inspector, and Tool Overrides & Annotations, and provides quick-start guidance for running MetaMCP with Docker, building a development environment, and integrating with clients like Claude Desktop via proxies. It also covers MCP protocol compatibility, authentication options (including API keys, OAuth, and OIDC), and integration guidance for developers looking to remix MCP tool flows and middleware pipelines.

MCPJungle

MCPJungle is a self-hosted MCP Gateway and Registry for AI agents. It serves as a central registry and gateway to manage Model Context Protocol (MCP) servers and the tools they expose. By consolidating MCP server registration, tool discovery, and access control, MCPJungle enables AI agents and clients to discover, group, and securely invoke tools from a single, unified gateway. The project provides a CLI, Docker-based deployment options, and enterprise-ready features such as tool grouping, access control, and observability to streamline MCP-based workflows across organizations.

LLM

2 MCPs
View All →

documentation

2 MCPs
View All →

model-context-protocol

2 MCPs
View All →

STDIO

2 MCPs
View All →

MarkItDown MCP

MarkItDown-MCP is a lightweight MCP (Model Context Protocol) server provided as the markitdown-mcp package. It exposes a STDIO, Streamable HTTP, and SSE MCP server designed for calling MarkItDown to convert content to Markdown. The package focuses on simplicity and accessibility, enabling you to run the MCP server locally via a simple CLI, or in Docker for containerized workflows, with integration options for Claude Desktop. The core capability is exposed through a single tool, convert_to_markdown(uri), which accepts a URI in http:, https:, file:, or data: schemes to fetch content and convert it to Markdown. This MCP server is easy to install with pip and can be used in various transport modes, including STDIO and HTTP/SSE, making it a flexible choice for automations and integrations.

IO Aerospace MCP Server

IO Aerospace MCP Server is a production-ready Model Context Protocol (MCP) server designed for aerospace and astrodynamics calculations. It exposes a rich set of tools for celestial body ephemeris, orbital mechanics, DSN ground station operations, solar system object properties, and comprehensive unit and time system conversions. Built on the IO Aerospace Astrodynamics framework, this server delivers core algorithms for ephemerides, geometry, and time systems, enabling developers to integrate advanced aerospace calculations into local or hosted deployments. The project supports both modern streamable-HTTP transport and legacy SSE/STDIO configurations, with self-hosting options via Docker or native .NET deployments for flexible integration into existing ecosystems.

HTTP

2 MCPs
View All →

MarkItDown MCP

MarkItDown-MCP is a lightweight MCP (Model Context Protocol) server provided as the markitdown-mcp package. It exposes a STDIO, Streamable HTTP, and SSE MCP server designed for calling MarkItDown to convert content to Markdown. The package focuses on simplicity and accessibility, enabling you to run the MCP server locally via a simple CLI, or in Docker for containerized workflows, with integration options for Claude Desktop. The core capability is exposed through a single tool, convert_to_markdown(uri), which accepts a URI in http:, https:, file:, or data: schemes to fetch content and convert it to Markdown. This MCP server is easy to install with pip and can be used in various transport modes, including STDIO and HTTP/SSE, making it a flexible choice for automations and integrations.

IO Aerospace MCP Server

IO Aerospace MCP Server is a production-ready Model Context Protocol (MCP) server designed for aerospace and astrodynamics calculations. It exposes a rich set of tools for celestial body ephemeris, orbital mechanics, DSN ground station operations, solar system object properties, and comprehensive unit and time system conversions. Built on the IO Aerospace Astrodynamics framework, this server delivers core algorithms for ephemerides, geometry, and time systems, enabling developers to integrate advanced aerospace calculations into local or hosted deployments. The project supports both modern streamable-HTTP transport and legacy SSE/STDIO configurations, with self-hosting options via Docker or native .NET deployments for flexible integration into existing ecosystems.

Claude Desktop

2 MCPs
View All →

Want to see your MCP in the rankings?

Submit Your MCP