Back to Categories
CLI
Discover the best CLI MCP servers for AI agents. Browse tools, use cases, installation guides, and integration documentation for cli-focused Model Context Protocol implementations.
5 results found
MarkItDown MCP
MarkItDown-MCP is a lightweight MCP (Model Context Protocol) server provided as the markitdown-mcp package. It exposes a STDIO, Streamable HTTP, and SSE MCP server designed for calling MarkItDown to convert content to Markdown. The package focuses on simplicity and accessibility, enabling you to run the MCP server locally via a simple CLI, or in Docker for containerized workflows, with integration options for Claude Desktop. The core capability is exposed through a single tool, convert_to_markdown(uri), which accepts a URI in http:, https:, file:, or data: schemes to fetch content and convert it to Markdown. This MCP server is easy to install with pip and can be used in various transport modes, including STDIO and HTTP/SSE, making it a flexible choice for automations and integrations.
Featured
Appwrite MCP server
Appwrite MCP server is a Model Context Protocol server that enables AI models to interact with Appwrite’s backend. It provides a curated set of MCP tools to manage databases, users, functions, teams, and more within your Appwrite project, enabling powerful AI-assisted workflows and natural-language interactions with your backend. The server ships with the Databases tools enabled by default to keep prompts within context limits and can be extended by enabling additional APIs via command-line flags. This makes it easier to build AI-powered applications that leverage Appwrite APIs securely and efficiently.
PersonalizationMCP
PersonalizationMCP is a unified personal data hub built on MCP (Model Context Protocol) that enables AI assistants to access and reason over data from Steam, YouTube, Bilibili, Spotify, Reddit, and more. This repository showcases a Python-based MCP server that aggregates platform APIs, manages OAuth2 tokens, and exposes a rich set of tools to query user data, playlists, watch history, and social actions. It emphasizes local data handling, token management automation, and a modular architecture that makes it easy to add new platforms through the @mcp.tool() decorator and server integration. Ideal for developers building context-aware assistants who want a single, extensible backend to surface personal data across multiple services.
The MCP server is designed to run locally on your machine with secure configuration, offering multiple installation paths (conda, uv, or pip with virtualenv). It includes a comprehensive set of available tools organized by platform, robust token management (notably YouTube), and practical guidance for configuration, testing, and cursor-based integration with consumer apps like Cursor. The project also provides detailed setup steps for each platform, including how to obtain API keys, cookies, and OAuth credentials, ensuring a smooth path from zero to a functioning personal data hub.
Featured
MCP Server Templates (Legacy)
MCP Server Templates (Legacy) is a flexible platform that provides Docker and Kubernetes backends, a lightweight CLI (mcpt), and client utilities for seamless MCP integration. It enables you to spin up servers from templates, route requests through a single endpoint with load balancing, and support both deployed (HTTP) and local (stdio) transports — all with sensible defaults and YAML-based configs. This legacy variant lays the groundwork for MCP integrations, while offering a clear upgrade path to the newer MCP Platform. The project emphasizes migration guidance to keep existing configurations working as you move to enhanced architecture and capabilities.
NCP - Natural Context Provider (NCP)
NCP is a unified MCP platform that consolidates 50+ tools, skills, and Photons into a single, intelligent interface. It enables code-mode execution, on-demand loading, scheduling, and semantic tool discovery, dramatically reducing token usage and latency while enabling AI assistants to work with external MCPs, skills, and Photons. This documentation covers how NCP works, the available MCPs and tools, installation and integration steps for popular clients (Claude Desktop, VS Code, and more), and practical examples that demonstrate how to find, run, and compose tools across MCPs. Whether you’re building with internal MCPs or exploring external tools, NCP provides a scalable, vendor-agnostic foundation for AI-powered automation and tool orchestration.